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Introduction 
 
All diffusion-tensor magnetic resonance imaging (DTI) studies of nerve, spinal cord white 
matter, and brain white matter rely on the phenomenon that water diffusion is highly anisotropic 
in these tissues of the nervous system. The fact that water diffusion is sensitive to the underlying 
tissue micro-structure provides a unique method of assessing the orientation and integrity of 
these neural fibres which may be useful in assessing a number of neurological disorders. A basic 
understanding of the influence of various structural components on anisotropic water diffusion is 
a pre-requisite for interpreting alterations in diffusion (trace, eigenvalues) and anisotropy as a 
result of various disease processes or abnormal development. The purpose of this abstract is to 
characterize the relationship of nuclear magnetic resonance measurements of water diffusion and 
its anisotropy (i.e. directional dependence) with the underlying micro-structure of neural fibres. 
A systematic discussion of the possible sources of anisotropy and their evaluation will be 
presented with an emphasis on model neurological systems both in-vitro and in-vivo. A 
comprehensive bibliography of papers before 2002 is provided in my previous review article on 
this interesting topic (1).  
 
Postulated Sources of Diffusion Anisotropy 
 
Although diffusion taking the path of least resistance along the oriented fibres was an obvious 
and plausible explanation for the observed anisotropy in neural fibres, little work had been 
performed to determine the relative contributions of the various structural components to the 
anisotropy of the water diffusion coefficients. Nonetheless, several possible origins of anisotropy 
had been postulated. For our purposes and to simplify the discussion, nerves (peripheral, central) 
and white matter (spinal cord, brain) are all ordered axonal systems that consist of essentially the 
same primary micro-structural components. The myelin sheath around the axons, the axonal 
membrane, and the neurofibrils (microtubules, neurofilaments) are three longitudinally-oriented 
structures that could impart non-random barriers to diffusion (Figure 1) and hence reduce the 
apparent diffusion coefficient perpendicular to the fibres, ADC(⊥) [given by the mean of the two 
smaller eigenvalues of the diffusion tensor, i.e. (λ2 + λ3)/2], with respect to the apparent 
diffusion coefficient parallel, ADC(//) [given by the largest eigenvalue of the diffusion tensor, 
i.e. λ1]. Alternatively, some proposed that the diffusion parallel to the length of the axons could 
be accentuated by axonal transport. Others have suggested that water diffusion, as measured by 
NMR, could be anisotropic due to local susceptibility-difference-induced gradients in the nerves 
and white matter. Nerve has proven to be an excellent system to evaluate diffusion anisotropy 
since it possesses structural components similar to white matter, it can be isolated, it is robust, 
and when excised it can be oriented readily along the laboratory axes of the diffusion gradients. 



 
 
Figure 1 :   A simplistic schematic of the longitudinal 
view of a myelinated axon. Myelin, the axonal 
membrane, microtubules, and neurofilaments are all 
longitudinally-oriented structures that could hinder 
water diffusion perpendicular to the length of the axon 
and cause the perpendicular diffusion coefficient, D(⊥) 
to be smaller than the parallel diffusion coefficient, 
D(//). Other postulated sources of diffusion anisotropy 
are axonal transport and susceptibility-induced 
gradients. The narrow extra-cellular space between the 
numerous packed axons is not illustrated. 
 

 
Myelin and Axonal Membranes    
 
The preferred, but unproven, hypothesis in the early 1990s for anisotropic water diffusion was 
the hindrance of perpendicular water diffusion by the myelin sheath encasing the axons. The 
numerous lipid bilayers of myelin have limited permeability to water and would be expected to 
hinder diffusion across the fibres but not along the length of the axons where such barriers did 
not exist. If myelin were the sole source of anisotropy, then it was expected that diffusion would 
be much more isotropic in a normal fibre tract without myelin. In one of the first systematic 
studies on the underlying source of anisotropy, this was found not to be the case since water 
diffusion was significantly anisotropic in a normal, intact, non-myelinated olfactory nerve of the 
garfish (2). The degree of anisotropy in the non-myelinated olfactory nerve [ADC(//)/ADC(⊥) = 
3.6] was similar to that observed in the garfish trigeminal nerve myelinated with Schwann cells 
[ADC(//)/ADC(⊥) = 3.2] and the garfish optic nerve myelinated with oligodendrocytes 
[ADC(//)/ADC(⊥) = 2.6]. The degree of anisotropy in these excised nerve samples measured at 
room temperature was quite similar to the anisotropy measured in-vivo in humans, lending 
credibility to the in-vitro data. It is important to note that the garfish olfactory nerve is normally 
non-myelinated and is not a model of demyelination. This study provided the first unequivocal 
evidence that myelin was not an essential component for anisotropic diffusion in neural fibres. 
This is not to say that myelin does not play a role in anisotropy, but rather this observation serves 
to point out that structural features of the axons other than myelin are sufficient to give rise to 
anisotropy and that interpretations of changes in anisotropy with respect to just myelination must 
be made with caution. 
 
The initial observation of anisotropy in the intact non-myelinated garfish olfactory nerve has 
subsequently been confirmed in various other models with non-myelinated neural fibres both in-
vitro and in-vivo. Other examples of non-myelinated fibres that exhibit significant anisotropic 
diffusion include the white matter of rat pups prior to histological evidence of myelination (3,4), 
optic nerve in 2 week old “jimpy” mouse (5), vagus nerve of the rat (6), spinal cord white matter 
in myelin deficient rat (7), brain white matter in developing mice (8), walking leg nerve of the 
lobster (1), lamprey spinal cord (9), brain white matter in baby rabbits (10), and the brain white 
matter of myelin-deficient genetically-engineered shiverer mice (11-13). In addition to animal 
studies, in-vivo human measurements in neonates have shown diffusion anisotropy in non-
myelinated fibres of the human brain (14-16). Anisotropic water diffusion in neural fibres must 
not be regarded as myelin specific. 



 
However, the study on the myelin deficient rat also nicely demonstrated that myelination can 
modulate the degree of anisotropy (7). The anisotropic diffusion ratio (// / ⊥) was ~ 4.5 and ~ 3.5 
in the control and myelin deficient white matter, respectively (or Aσ ~ 0.53 and 0.45 with their 
measure of anisotropy). The anisotropy decreased only by ~ 20% in the myelin deficient rats and 
signified that the residual structures, namely the membranes of the numerous axons, are 
sufficient for significant anisotropic diffusion in this model. Similar observations in elegant 
studies of shiverer mice have been reported (11-13). Relative anisotropy was reduced by 16-25% 
in various white matter tracts of the shiverer mice although the considerable residual anisotropy 
confirmed that myelin modulates the degree of anisotropy but that it is not the main factor (11). 
The reduction in anisotropy was due to an increase in ADC(⊥) with no concomitant change in 
ADC(//). The treatment of shiverer mice with neural precursor cells created regions with 
increased diffusion anisotropy that corresponded well with the spatial distribution of donor-
derived myelination in individual mouse brains indicated by immunohistochemistry or 
fluorescence microscopy (12). In a statistical parametric mapping study of shiverer mice, there 
was a general increase in parallel and perpendicular diffusivities (and trace ADC); these 
individual diffusion parameters seemed to be more sensitive to dysmyelination than the derived 
fractional anisotropy (13). This agrees with the demonstration in a mouse optic nerve after retinal 
ischemia that decreases of ADC(//) and increases of ADC(⊥) may be specific markers for the 
identification of axonal degeneration versus myelin loss, respectively, whereas both pathologies 
would result in non-specific reduced anisotropy (17). 
 
In general though, a quantitative or even qualitative determination of the relative importance of 
axonal membranes and myelin for anisotropy in a particular fibre tract is difficult to assess. 
Direct comparisons of the degree of anisotropy between unique fibres with different axon 
diameters, degree of myelination, and fibre packing density are fraught with difficulty. Various 
diffusion indices such as ADC(⊥), ADC(//), and anisotropy index have correlated with numerous 
histological parameters of axon morphometry, primarily axon density, in normal myelinated, rat 
cervical spinal cord (18). 
 
As we will see below, the other potential contributors (neurofibrils, fast axonal transport, 
susceptibility) to anisotropy are not significant.   
 
Neurofibrils and Fast Axonal Transport    
 
The complex and dense three-dimensional cytoskeleton of axons is mainly composed of 
longitudinal-oriented, cylindrical neurofibrils, namely microtubules and neurofilaments, which 
are inter-connected by small microfilaments. These structures could presumably cause 
anisotropic diffusion if the small, but numerous, neurofibrils presented sufficient physical 
barriers to hinder perpendicular water diffusion to a greater extent than parallel. In addition, fast 
axonal transport is intimately linked to the presence of microtubules since cellular organelles are 
transported along the microtubule tracks. 
 
The role of microtubules and fast axonal transport in anisotropic diffusion was evaluated in 
excised myelinated and non-myelinated nerves of the garfish that were treated with vinblastine 
that is known to depolymerize microtubules and inhibit fast axonal transport (2). Anisotropy was 



preserved in all three types of nerve treated with vinblastine suggesting that microtubules 
themselves and the fast axonal transport they facilitate do not contribute to anisotropy. 
 
This earlier study did not assess the role of the numerous longitudinal-oriented neurofilaments, 
the primary structural component of the axoplasm. The influence of the neurofilamentary 
cytoskeleton on water mobility was evaluated by making measurements in axoplasm with 
minimal interference from membranes (19). The isolated giant axon from squid was used 
because it can provide an axoplasmic space (diameter ~ 200-1000 µm) whose dimension is much 
greater than the one-dimensional, root-mean-square displacement (~11 µm) of a water molecule 
randomly diffusing over typical diffusion times used in NMR studies (~ 30 ms). The diffusion 
coefficients of water parallel and perpendicular to the long axis of the squid giant axon at 20oC 
were 1.6x10-3 mm2 s-1 and 1.3x10-3 mm2 s-1, respectively, which yielded an anisotropic diffusion 
ratio (// / ⊥) of only 1.2, which is nearly isotropic. This experimental measure of anisotropy 
matched Monte Carlo computer simulations of randomly diffusing particles in a regular, 
hexagonal array of circular barriers whose size (10 nm) and spacing (20-60 nm) were chosen to 
simulate the neurofilamentary lattice (19). Two important findings resulted from this work. First, 
the neurofilaments do not have a significant role in producing diffusion anisotropy within the 
axon and thus pointed towards the importance of membranes in fulfilling the role as the primary 
determinant of the observed anisotropy in neural fibres. Second, water diffusion in pure 
axoplasm (i.e. intra-cellular space of axons) is rapid and is ~70-80% of that in pure water at 20oC 
(ADC ~ 2x10-3 mm2 s-1). 
 
Our work on the excised and isolated squid giant axon was confirmed by diffusion micro-
imaging of the non-myelinated lamprey spinal cord which consists of variable axon diameters 
(9). In very large axons whose diameter is much greater than the root-mean-square displacement 
of diffusing water molecules, the parallel and perpendicular ADCs were identical (and fast ~0.98 
x10-3 mm2 s-1) indicating isotropic diffusion in the absence of interaction with membranes. In 
contrast, water diffusion was anisotropic in white matter regions with multiple packed axons; 
however, ADC(//) was the same as the single axon case whereas the ADC(⊥) was reduced 
markedly and varied inversely with the number of axons (membranes) over a fixed distance. 
 
Susceptibility    
 
Anisotropic water diffusion, as measured by NMR, could result from local susceptibility-
difference-induced gradients in the nerves and white matter and its first evaluation was 
performed on excised porcine spinal cord at 4.7T (20). By varying the orientation of the fibre 
tracts parallel or perpendicular to the static magnetic field (Bo), the background gradients could 
be minimized or maximized, respectively. The ADCs parallel or perpendicular to the fibres 
measured with the standard PGSE diffusion sequence were independent of the fibre orientation 
relative to Bo and hence the induced gradients do not play a role in the anisotropy of diffusion in 
white matter. They also used a bipolar gradient pulse sequence to eliminate the effect of the 
background gradients on the ADC values. The ADC and anisotropy independence on 
susceptibility-induced gradients was confirmed subsequently in four different excised nerves 
from garfish and frog at 2.35T (21) and in human brain white matter in-vivo at 1.5T (22). 
 



Other Issues    
 
Numerous studies on restricted diffusion, dependence on diffusion time, multiple compartments, 
pathology, development, and computer modeling are not outlined here but some will be covered 
very briefly as they pertain to this discussion on the underlying causes of anisotropic diffusion.  
 
Conclusions 
 
Although the interpretation of water diffusion in a complex biological tissue such as nerve and 
white matter is not trivial, numerous studies over the last 15 years have provided a better 
understanding of the relationship between diffusion and the underlying micro-structural 
components. Evidence suggests that anisotropic water diffusion in neural fibres is mainly due to 
the dense packing of axons and that it is the inherent axonal membranes that hinder water 
diffusion significantly perpendicular to the long axis of the fibres relative to the preferential 
parallel direction. Hence, axonal membranes are concluded to be the primary determinant of 
anisotropy although myelination certainly modulates the degree of anisotropy in a given fibre 
tract. Nonetheless, one should exercise caution in interpreting differences of anisotropy. 
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